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A simple model for the evolution of turbulence fluctuation spectra, which includes neighboring

interactions leading to the usual dual cascade as well as disparate scale interactions corresponding to

refraction by large scale structures, is derived. The model recovers the usual Kraichnan-Kolmogorov

picture in the case of exclusively local interactions and midrange drive. On the other hand, when disparate

scale interactions are dominant, a simple spectrum for the density fluctuations of the form jnkj2 /
k!3=ð1þ k2Þ2 is obtained. This simple prediction is then compared to, and found to be in fair agreement

with, Tore Supra CO2 laser scattering data.
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The wave-number spectrum is one of the few quantities
that can be measured in a tokamak, which allows probing
the characteristics of underlying microturbulence [1–4]. It
is important for validation as a higher order observable (in
contrast to heat flux and other scalar quantities) [5]. Today,
direct numerical simulations of gyrokinetic Vlasov equa-
tions are the main tools for studying anomalous transport.
Such simulations are used for predictions to experimen-
tally inadmissible parameter regimes, which influence de-
sign decisions. It is crucial that these numerical simulations
describe the same kind of microturbulence as observed in
tokamaks. One of the ways this can be verified is by
studying the wave-number spectrum of density fluctua-
tions. However, a direct comparison between experiment
and numerical simulation may not always be possible due
to various underlying assumptions in simulations. Thus, it
is also important to contract the information in the form of
simple physical concepts whenever possible.

Historically, one of the drives for the interest in simple
drift-wave models such as, for instance, the Hasegawa-
Mima equation [6], was indeed the earlier observations
of wave-number spectra, which differed from well-known
power-law predictions. The Hasegawa-Mima equation was
suggested initially as a paradigm to explain the rather flat
electron density fluctuation spectrum observed in the ATC
tokamak using the microwave scattering [7] technique.
Note that density and electrostatic potential fluctuations
are equal when the electron response is adiabatic.

The canonical spectra that the simple drift-wave picture
suggests (either Hasegawa-Mima or more complex re-
duced models), usually has the basic form j!kj2 % ð!þ
"k2Þ!1=ð1þ k2Þ, where ! and " are coefficients and k is
normalized to #!1

s (e.g., [8]). However, this is not what was
observed in numerical simulations of these models. This is
believed to be due to the effect of dissipation on the
stability properties of this spectrum. In fact classical dual
cascade of Kraichnan and Kolmogorov [9], which corre-

sponds to j!kj2 % k!14=3 for the inverse cascade range and
j!kj2 % k!6 for the forward cascade range was more com-
mon (e.g., [10]). The dual cascade picture is a result of
local interactions and the fact that energy and enstrophy are
conserved by the inviscid nonlinear dynamics. Thus it can
be recovered from a simple shell model of drift-wave
turbulence [11–13].
During the decade that followed these earlier develop-

ments, it became evident that zonal flows, and other large
scale structures such as GAMs or generalized convective
cells, played an important role in both dynamics and
regulation of plasma microturbulence [14]. It turned out
that the disparate scale interactions responsible for the
formation of sheared flows, and self-regulation of turbu-
lence by these sheared flows were as important, dynami-
cally, as the local interactions that resulted in the cascade.
Here we propose a simple spectral model, which is

devised as a ‘‘shell model’’ with disparate scale interac-
tions. We impose the conservation ‘‘potential enstrophy’’
as the primary constraint on dynamics in order to derive it.
From our interpretation of this simple shell model, we
obtain an ‘‘isotropized’’ spectrum of the form

jnkj2 % j!kj2 /
k!3

ð1þ k2Þ2 (1)

when the disparate scale interactions are dominant. Here
the fluctuation spectrum is averaged over the angular vari-
able (!k) in Cartesian k space consisting of k$ and kr [i.e.,
!k & a tanðk$=krÞ]. This implies that the small scale tur-
bulence is assumed to be isotropic.
Note that even though we used the shell model to obtain

(1), it in fact follows from the physical assumptions of
nonlocal interactions and isotropy and is a general feature
of drift-wave turbulence under these assumptions. Also, in
our formulation, the large scale structures corresponding to
convective cells, or zonal flows (i.e., kk ¼ 0modes) are not
assumed to be isotropic. However, the small scales (i.e.,
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kk ! 0 modes) are assumed to respond adiabatically (i.e.,
sufficiently rapidly) and isotropize themselves as they are
refracted by possibly anisotropic large scale flows. If this
condition does not hold and the small scale turbulence
deviates significantly from isotropy, neither the use of a
shell model nor of (1) may be justified.

Derivation of the shell model can be started with the
introduction of the conserved field, the potential vorticity
(PV) [15,16], which is defined as

h & n!r2!:

Notice that density n in potential vorticity includes back-
ground density n0ðxÞ, density corrugations "nðx; tÞ, and the
fluctuations ~nðx; tÞ. For instance the Hasegawa-Wakatani
system (when perpendicular viscosity is unimportant) can
be described as conservation of PV:

dh

dt
¼ 0: (2)

Similarly a simple ion temperature gradient driven (ITG)
[17] turbulence model can be written as a conservation of
PV, defined as h & n!r2!! P=#, etc. (where P is
pressure and # is the adiabaticity coefficient) [18]. We
also note that PV conservation corresponds to conservation
of electron density with the gyrokinetic Poisson equation in
the lowest order.

Starting from (2) and expanding it into fluctuations and
mean flows, we obtain

@~h

@t
þ ẑ(r "! ) r~h ¼ ẑ(rh0 ) r ~!þ ẑ(r "h ) r ~!þ ẑ

(r~h ) r ~!; (3)

where h0 ¼ h0ðxÞ is the background profile of PV whose
gradient acts as a free energy for this system. Here we
denote slowly evolving kk ¼ 0 modes (mean fields) with

ð)Þwhile the fluctuations are denoted byfð)Þ. The right-hand
side of (3) corresponds to linear and nonlinear growth and/
or damping, and it is necessary to describe the dynamics of
~! separately in order to actually obtain these quantities.
The corresponding mean field equation is

@ "h

@t
þ hẑ(r ~! ) r~hi ¼ 0:

Here we consider % ¼ 0 (no collisional damping) for sim-
plicity. In a numerical implementation of the shell model,
one needs viscous or hyperviscous damping in addition to a
drag term on the zonal flow equation in order to reach
steady state.

The shell model corresponding to (3) can be constructed
by taking circular ‘‘shells’’ in k space such that each shell is
described by the magnitude of its wave number kn ¼ gnk0
(where g > 1 defines the logarithmic distance among
shells). The potential vorticity in the nth shell is defined
as the shell variable

hn ¼
!
2&

Z knþ1

kn

hj~hkj2ikdk
"
1=2

respecting the form of the interaction coefficients and
conservation of total potential enstrophy, we obtain

@

@t
hn ! 'nhn ! !pknð "!hnþ1 ! g!1 "!hn!1Þ

¼ !pknð "h!nþ1 ! g!1 "h!n!1Þ þ Cðh;!Þ; (4)

where p is the wave number of the large scale mode and !
is a ‘‘free’’ parameter for the shell model, representing the
strength of the nonlinear term due to turbulence decorre-
lation by large scales. Its determination for the physical
system is out of scope of the current Letter. The first term
on the left of (4) represents linear coupling with the back-
ground gradient dh0=dx% dn0=dx. The coupling term is
in fact proportional to dn0=dx and !n instead of hn.
However, for simplicity we do not specify a separate !n

equation here and instead use a generic linear growth to
represent that term. Similarly if there is collisional and/or
Landau damping on fluctuations, these would also enter
into the expression for 'n.
In order to compute the terms on the right-hand side,

which correspond to nonlinear growth or damping, an
equation for ! is needed. We can write such an equation
for a given model (e.g., Hasegawa-Wakatani or ITG). The
detailed derivation of this model will be given in a future
paper, where it is shown that (4) can also be derived from a
full shell model of Hasegawa-Wakatani system (with sepa-
rate equations for nn and!n) by forming hn ¼ nn þ k2n!n.
However, in practice, hn %!nð1þ k2nÞ may be used as a
crude approximation.
The local cascade is described here by the ‘‘wave colli-

sion’’ operator Cðh;!Þ:
Cðh;!Þ & !0k2nfg!3ð!n!2hn!1 !!n!1hn!2Þ

! g!1ð!n!1hnþ1 !!nþ1hn!1Þ
þ gð!nþ1hnþ2 !!nþ2hnþ1Þg: (5)

Here we note that for hn %!nð1þ k2nÞ one can show that

!n % k!4=3
n and !n % k!2

n make Cðh;!Þ vanish exactly.
The two additional nontrivial solutions given by the full

system are f!n; hng / fk!4=3
n ; k!1=3

n g and f!n; hng /
fk!2

n ; k0ng, which yield j~hkj2 / k!8=3 and j~hkj2 / k!2, the
latter being the so-called Batchelor’s spectrum [i.e.,
j~hkj2k ! FðkÞ / k!1]. Complementary to (4) is the mean
PV equation

@

@t
"h!

X

n

!g!1knð!nhn!1 !!n!1hnÞ ¼ 0: (6)

Where "h & ½2&Rq
0hj "hq0 j2iq0dq0+1=2 and the total enstrophy

is defined asW ¼ "h2 þP
nh

2
n, whose conservation leads to

the specific form for the coefficients of Eq. (4) and sets the
form of Eq. (6). Local interactions described by Cðh;!Þ on
the other hand, survive also in the absence of mean flows
and thus are taken to conserve the total fluctuation ens-
trophy ~W ¼ P

nh
2
n. However, note that the full Hasegawa-

Wakatani shell model, from which (4) and (6) can be
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deduced has 4 nonlinearly conserved quantities. The extra
conservation laws follow from the dynamics of the electro-
static field (fluctuating and mean), which are unspecified in
(4) and (6) for generality.

The stationary limit of turbulence spectrum can be ob-
tained by setting @

@t ! 0 in (4) and (6). Furthermore we
drop all the terms corresponding to the right-hand side of
(3) in order to obtain a spectrum dominated by nonlocal
interactions with a large scale flow. In this limit, we have

!knð "!hnþ1 ! g!1 "!hn!1Þ , 0;

which can be solved as a simple power law for the PV

spectrum: hn % h0k
!1=2
n . For the near adiabatic limit of the

Hasegawa-Wakatani system, hk % ð1þ k2 þ i(kÞ!k, this
becomes, hn % ð1þ k2nÞ!n or!

2
n % k!1

n ð1þ k2nÞ!2 for the
shell variable. This implies

j ~!kj2 % j~nkj2 %
k!3

ð1þ k2Þ2 : (7)

This is the spectrum implied by disparate scale interactions
with a mean or zonal flow. Of course, these are not the
‘‘only’’ types of interactions and one needs to consider the
more general case. However, it is a simple and interesting
limiting case, whose signatures are pronounced also in
numerical integrations of (4) and (6) without making the
assumptions leading to (7). The fact that it compares
reasonably well with experimental spectra (see Fig. 1)
suggests also that it may be relevant in some cases for
tokamak turbulence.

In addition, we would like to note that this spectrum is
not an artifact of the shell model that we present here. It
rather follows from the physical assumptions that we have
made (i.e., disparate scale interactions and small scale
isotropy). It can also be derived, for example, using the
isotropic form of the k-space diffusion equation describing
the disparate scale interactions for the ‘‘generalized’’
Hasegawa-Mima system [19] under these assumptions,
by using the simple estimate )!1

k % "vk for the triad inter-
action time with the mean flow.

The density fluctuation k spectrum used for the com-
parison has been obtained in Tore Supra from scattering of

electromagnetic waves (CO2 laser). The diagnostic [20]
was based on coherent forward Thomson scattering, which
is a suitable technique for the purpose of fine scale analy-
sis, since it provides directly the space Fourier transform of
the fluctuating density at a specified wave number. The
diagnostic was designed for direct and detailed study of
turbulence scales, with a high wavelength resolution
($k% 1:35 cm!1), and was used in the range 5:5< k? <
26 cm!1. The data displayed in Fig. 1 are from L mode
plasma [3], with ICRH heating and #s , 1 mm.
A continuum limit of the shell model can be derived by

taking g% 1þ * and redefining hkn , hnðknÞ=kn
ffiffiffiffiffiffiffiffiffi
2&*

p

(i.e., we divide by the shell ‘‘volume’’). Substituting hn !
khðkÞ ffiffiffi

*
p

and expanding in *:

@hðkÞ
@t

þ 2!*p "!k1=2
@

@k
ðk3=2hðkÞÞ ¼ 'ðkÞhðkÞ þ 2!*p "h

$
k1=2

@

@k
ðk3=2!ðkÞÞ

%
þ Cð!; hÞ

k
ffiffiffi
*

p ; (8)

with the collision term

Cð!;hÞ,!0k2*4
&
2k5

!
!ðkÞ!1=2 d

dk

$
d2

dk2
hðkÞ!ðkÞ3=2

%
!hðkÞ!1=2 d

dk

$
d2

dk2
!ðkÞhðkÞ3=2

%"

þ21k2
d

dk

$!
dhðkÞ
dk

!ðkÞ!d!ðkÞ
dk

hðkÞ
"
k2
%'
: (9)

It can easily be verified that nontrivial power-law solutions that make (5) vanish, such as !ðkÞ / k!7=3 and hðkÞ / k!4=3,
make (9) vanish also. Similarly, hðkÞ / k!3=2, make the @

@k ðk3=2hðkÞÞ term in (8) vanish. Multiplying (8) by 2hðkÞ, we obtain
@hðkÞ2
@t

þ 1

k

@

@k
ðk½2!*ðp "!ÞðhðkÞ2k2Þ+Þ ¼ 2'ðkÞhðkÞ2 þ 4!*p "hk1=2hðkÞ @

@k
ðk3=2!ðkÞÞþ 2hðkÞCð!; hÞ

k
ffiffiffi
*

p ; (10)

FIG. 1. A log vs log plot of density fluctuation spectrum
normalized to #- ¼ #s=a. Here while the solid line is the
theoretical prediction j~nkj2 / k!3=ð1þ k2Þ2, the crosses and
circles correspond to CO2 laser scattering data from Tore
Supra with ion cyclotron resonance heated (ICRH) plasma
with magnetic field B ¼ 3:2 T and power P ¼ 2 MW and P ¼
4 MW, respectively. It shows a reasonable agreement for k >
0:6–0:7. Note that the CO2 scattering measures primarily the
binormal wave number ky & b̂( r̂ ) k. Note that the error bars
indicate the resolution of k only. We used an average value of #s.
An error in this value would simply move the whole figure
sideways.
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where the left-hand side corresponds to the @
@tWk þrk )

ð "Vk2WkÞ in contrast to the wave-kinetic equation [21,22]:

@

@t
NkðtÞ þ rk )

&Z
dx½ "!kðxÞrNkðx; tÞ+

'
¼ C; (11)

where "!kðxÞ , "VðxÞky. Going from (11) to the correspond-
ing terms in (10) requires the nontrivial assumptions of
isotropy (i.e., kx % ky) and scale separation [i.e.,
NkðxÞ!1@XNkðxÞ % *k]. Note also the appearance of the
cylindrical divergence operator in (11), since we use k ¼
jkj as the independent variable.

In order to write the equation for energy, we multiply (8)
by!ðkÞ instead of hðkÞ and use hðkÞ ¼ ð1þ k2Þ!ðkÞ. This
allows us to contrast the collision operator in (10), as given
in (9), with the differential approximation models used in
fluid dynamics [23,24]. Substituting hðkÞ ¼ ð1þ k2Þ!ðkÞ
into (9) and rearranging, we obtain

C½!; ð1þ k2Þ!+ ! 3!0*4

!ðkÞ
@

@k

$
k2!ðkÞ @

@k
ðk6!ðkÞ2Þ

%
;

which is exactly the same as in Refs. [23,24], when written
in terms of !ðkÞ.

The continuum limit can be useful in application to the
dissipative range. Assume that the ‘‘effective’’ linear
growth or damping in steady state is given by 'RðkÞ as a
function of k, where the steady state can be described as a
balance between the second term on the left and the first
term on the right-hand side of (8):

2!*p "!k1=2
@

@k
ðk3=2hðkÞÞ ¼ 'RðkÞhðkÞ: (12)

Here the right-hand side is taken to represent the difference
between growth due to h0 þ "h, and the damping, including
eddy damping. At small scales, 'RðkÞ becomes negative,
due to dissipation, eddy damping or landau damping domi-
nating over linear growth. If we take 'RðkÞ % !+Rk

2,
representing this ‘‘dissipative range,’’ we obtain for the
fluctuating density that

hj~nkj2i % hj ~!kj2i %
k!3

ð1þ k2Þ2 e
!+k;

where +% +R=2!*p "!, which suggests that the spectrum
is affected by the growth-damping profile.

We developed a simple shell model for the evolution of
turbulence spectra, which includes local and disparate
scale interactions in addition to linear growth or damping.
The derivation is based on PVand enstrophy conservation,
while the local interactions conserve fluctuation enstrophy
disparate scale interactions conserve total (fluctuationþ
mean) enstrophy. We observed that the same model can be
derived using a 2-field system (such as Hasegawa-
Wakatani system) and combining the separate equations
for density and electrostatic field in order to describe PV
evolution. Using this model, when the local interactions are

dominant, the Kraichnan-Kolmogorov picture of dual cas-
cade can be recovered, whereas if disparate scale interac-
tions are dominant, an isotropic small scale spectrum of the
form k!3=ð1þ k2Þ2 was obtained. We observed that this
simple analytical form compares reasonably well with the
density fluctuation spectrum from Tore Supra tokamak
measured using CO2 laser scattering.
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